

Quiz 2: Process intensification

Part 1: True-false

Circle T (true) or F (False)

- 1) T F For single reactant first order reactions of type $A \rightarrow B$, there is no influence of the degree of segregation on the conversion of reactant A.
- 2) T F For a same concentration set using the Villermaux-Dushman protocol, a decrease in the segregation index implies an increase in the mixing time.
- 3) T F For a homogeneous reaction, the characteristic reaction time is linearly dependent on the characteristic dimension of the reactor.
- 4) T F The Nusselt number is significantly higher in a COBR than in an unbaffled tube (under identical Re_n and Re_o conditions).
- 5) T F In the laminar regime, the Bodenstein number in a COBR is higher than in a smooth (unbaffled) tube (using identical Re_n and Re_o)

Short justification of your answer:

- 6) T F In a RPB, the HETP is significantly higher than in a conventional packed column.
- 7) T F In a RPB, the liquid is delivered at the eye of the rotor.
- 8) T F A RPB can be used for stripping, gas absorption and distillation.
- 9) T F In a TF-SDR, the film thickness decreases with flowrate.
- 10) T F In a TF-SDR, the film thickness increases with disk rotational speed.
- 11) T F In a TF-SDR, the mixing time is short enough to carry out precipitations and obtain very low particle sizes with particularly narrow particle size distributions.
- 12) T F In a TF-SDR, the film thickness decreases with radial position.
- 13) T F In a PFR, there is no effect of segregation on the conversion of single reactant reactions of the type $A \rightarrow P$.

14) **T F** For a single reactant reaction of the type $A \rightarrow P$ with a reaction order $n > 1$, a negative effect of segregation on the reaction rate is expected.

Part 2: Multiple choice

Choose the correct answer. Check only one box per question, as there is only one correct answer.

15) The ratio of characteristic times between a homogeneous and a heterogeneous reaction (R = characteristic length of the reactor)

is independent of R increases with R decreases with R

16) For the following competing scheme: $A_1 + 2A_2 \rightarrow A_3$ (instantaneous) and $A_4 + 3A_2 \rightarrow A_5$, with $c_{10} = 1$ and $c_{40} = 2$, Y_{CS} is equal to

3/5 3/4 2/3

17) At equal values of t_{mx} and τ , the segregation intensity in a CSTR is

larger than in a PFR smaller than in a PFR the same as in a PFR

18) For the following reaction: $A_1 + A_2 \rightarrow P$, first order in A_1 and A_2 with $DalI_{mx} = 1$ (separate A_1 and A_2 feeds), the conversion in a given type of reactor at a given value of $DalI$, compared to the micromixed system, is expected to be

higher lower the same

19) For a single reactant reaction of the type $A \rightarrow P$ carried out in a PFR, segregation has the following effect on conversion (compared to a micromixed PFR):

Increases the conversion Decreases the conversion No effect on conversion Depends on the reaction order

20) In a PFR, the intensity of segregation

increases with Z decreases with Z is constant in the reactor

21) The segregation index was measured in two reactors using the Villermaux-Dushman protocol. $X_s(\text{reactor 1}) > X_s(\text{reactor 2})$. Which reactor has the lowest mixing time?

Reactor 1 Reactor 2 There is not enough information available to decide

Short justification of your answer:

22) Which variables should preferably be kept constant for the scale-up of a COBR?

$\frac{L}{D}, \alpha, \psi, Str$

$\frac{L}{D}, Re_o, Str, \psi$

$\frac{L}{D}, \alpha, f, x_o$

23) The RTD in a RS-SDR can be described by the following model:

Plug-flow

Combination of plug-flow and cascade of CSTRs

Cascade of CSTRs

24) For a reaction with $\Delta V^\neq > 0$, an increase in the pressure

increases the reaction rate

decreases the reaction rate

25) How do the following properties change when a liquid changes from standard (below critical p and T) to supercritical conditions?

D_m

ρ

μ

Increases

Increases

Increases

Decreases

Decreases

Decreases